Printe	ed Paş	· ·				
		Roll. No:				
NIO	ATDA .	INSTITUTE OF ENGINEERING AND TECHNOLOGY CREATER NOIDA				
NU	NOIDA INSTITUTE OF ENGINEERING AND TECHNOLOGY, GREATER NOIDA (An Autonomous Institute Affiliated to AKTU, Lucknow)					
		B.Tech				
		SEM: IV - THEORY EXAMINATION (20 20)				
		Subject: Analog and Digital Communication				
	e: 3 F					
		structions: y that you have received the question paper with the correct course, code, branch etc.				
		stion paper comprises of three Sections -A, B, & C. It consists of Multiple Choice				
		MCQ's) & Subjective type questions.				
	•	n marks for each question are indicated on right -hand side of each question.				
		your answers with neat sketches wherever necessary.				
		uitable data if necessary.				
•		ly, write the answers in sequential order.				
		should be left blank. Any written material after a blank sheet will not be hecked.				
	iiceii ei					
SECT	ION-	· A 20				
1. Atte	empt a	all parts:-				
1-a.	•	he modulation index of AM with carrier voltage V_c and modulating Voltage V_m 1				
		:(CO1,K2)				
	(a)	$V_{\rm m}/V_{\rm c}$				
	(b)	V_c/V_m				
	(c)	$V_{\rm m}$				
	(d)	K_aV_c				
1-b.	T	he function of multiplexing is (CO1,K2)				
	(a)	to reduce the bandwidth of the signal to be transmitted				
	(b)	to combine multiple data streams over a single data channel				
	(c)	to allow multiple data streams over multiple channels in a prescribed format				
	(d)	to match the frequencies of the signal at the transmitter as well as the receiver				
1-c.	В	.W. of DPSK is (CO2,K2)				
	(a)	$2R_{b}$				
	(b)	$R_b/2$				
	(c)	R_b				
	(d)	None of the menioned				
1-d.	In	a delta modulation system, granular noise occurs when the:(CO2,K2)				
	(a)	modulating signal increases rapidly				
	(b)	pulse rate decreases				

	(c)	pulse amplitude decreases			
	(d)	modulating signal remains constant			
1-e.		Binary Phase Shift Keying system, the binary symbols 1 and 0 are represented carrier with phase shift of (CO3,K2)	1		
	(a)	π/2			
	(b)	π			
	(c)	2π			
	(d)	0			
1-f.		he probability of error of DPSK is than that of BPSK.	1		
	(a)	Higher			
	(b)	Lower			
	(c)	Same			
	(d)	Not predictable			
1-g.	0.	ve source messages are probable to appear as $p(m1) = 0.4$, $p(m2) = 0.15$, $p(m3) = 15$, $p(m4) = 0.15$, $p(m5) = 0.15$. The efficiency of Huffman code is (CO4, K2)	1		
	(a)	98.68			
	(b)	97.6			
	(c)	97.4			
	(d)	none of these			
1-h.	A communication channel with additive white Gaussian noise, has a bandwidth of 4 kHz and SNR of 15. Its channel capacity is KBPS. (CO4,K2)		1		
	(a)	2			
	(b)	4			
	(c)	15			
	(d)	16			
1-i.	The hamming distance between equal codewords is (CO5,K2)				
	(a)	1			
	(b)	n			
	(c)	0			
	(d)	None of the mentioned			
1-j.		o guarantee the detection upto 5 errors in all cases, the minimum hamming stance in a block code must be(CO5,K2)	1		
	(a)	5			
	(b)	6			
	(c)	11			
	(d)	None of the mentioned			

2. Attem	pt all parts:-	
2.a.	How antenna height is reduced by modulation? (CO1,K2)	2
2.b.	State any two disadvantages of PSK modulation technique.(CO2,K1)	2
2.c.	Define pseudorandom noise sequence.(CO3,K1)	2
2.d.	Calculate the entropy of source with a symbol set containing 64 symbols each with a probability $pi = 1/64$. (CO4,K3)	2
2.e.	Calculate Hamming Weight of codeword C = 0110000. (CO5,K3)	2
SECTIO	<u> </u>	30
3. Answ	er any <u>five</u> of the following:-	
3-a.	Derive an expression for a single tone AM and draw its spectrum. Also derive its power expression. (CO1,K2)	6
3-b.	1200W is contained at the carrier frequency of an AM signal. Determine the power content of each of the sidebands for each of the following percent modulations: (a) 40%, (b) 50%, (c) 75%, (d) 100% (CO1,K2)	6
3-c.	What is NRZ and RZ encoding techniques? Explain by drawing the waveforms. (CO2,K1)	6
3-d.	Draw the block diagram of the transmitter and receiver of PCM. (CO2,K2)	6
3.e.	Define processing gain or spreading factor and write down the difference between fast hopping and slow hopping.(CO3,K1)	6
3.f.	A discrete memory less source X has four symbols x1, x2, and x3 with probabilities $P(x1) = 0.4$, $P(x2) = 0.2$, $P(x3) = 0.2$. Calculate entropy.(CO4,K3)	6
3.g.	Design a block code with a minimum distance of three & message block of eight bits. (CO5,K6)	6
SECTIO	<u>DN-C</u>	50
4. Answ	er any <u>one</u> of the following:-	
4-a.	Expression of an AM wave is $S_{AM}(t) = 50 [1+0.8 \cos (400 \pi t)] \cos 2\pi \times 10^5 t$, Determine the carrier frequency fc, modulating frequency fm, and modulation index.(CO1,K2)	10
4-b.	Derive an expression of single-tone FM signal, sketch the spectrum, Define Modulation Index and derive expression for BW and Modulation Efficiency.(CO1,K1)	10
5. Answ	er any <u>one</u> of the following:-	
5-a.	Find the Nyquist rate and the Nyquist interval for the signal $x(t) = 1/2\pi \cos(4000\pi t) \cos(1000\pi t)$. (CO2,K2)	10
5-b.	Explain the generation and coherent detection of ASK with the help of waveform and block diagram. (CO2,K2)	10
6. Answ	er any <u>one</u> of the following:-	
6-a.	Define spread spectrum. What is the main idea of direct sequence spread spectrum? Explain disadvantages of direct sequence spread spectrum?(CO3,K1)	10

6-b.	What is the concept of Matched Filter? Calculate the probability of error for the matched filter. (CO3,K1)	10
7. Answe	er any <u>one</u> of the following:-	
7-a.	Design binary Huffman code for a discrete source of five independent symbols A,	10

- 7-a. Design binary Huffman code for a discrete source of five independent symbols A, B, C, D, and E with probabilities 0.4, 0.2, 0.3, 0.8, and 0.02 respectively such that the variance of code word length is minimum.(CO4,K6)
- 7-b. A DMS X has six symbols X1, X2, X3, X4, X5 and X6 with probabilities P(X1) = 10 0.30, P(X2) = 0.25, P(X3) = 0.20, P(X4) = 0.12, P(X5) = 0.08 and P(X6) = 0.05 respectively. Construct one shannon-Fano code for X. (CO4,K6)
- 8. Answer any one of the following:-
- 8-a. For the message 10110, design convolutional code tree. (CO5,K6)
- 8-b. The generator matrix for a (6, 3) block code is given below. Find all the code words for this block code. (CO5,K5)

$$\begin{bmatrix} 1 & 0 & 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 & 1 & 0 \end{bmatrix}$$

